In shielded metal-arc welding,
intense heat from an electric arc is used to melt and fuse metals to form a weld. It is one of
oldest and most widely used welding processes. Although used chiefly for joining iron and mild steels, shielded metal-arc welding is well suited to maintenance tasks because
equipment is relatively inexpensive, simple to operate, and can be used for welding many different kinds of metals.Below, you will find explanations describing
shielded metal-arc welding process and how
welding machines and accessories are set up and used. You will also find information on selecting an electrode. The personal safety equipment and precautions are also described.
How
Process Works
A typical SMAW outfit consists of an electric welding machine, two welding cables, a ground clamp, an electrode holder, and a covered metal electrode. Electric current from
welding machine is used to form an electric arc between
tip of
electrode and
work.
Welding is started by touching
end of
electrode to
base metal, then lifting
electrode about ¼ inch. This forms
arc, which produces temperatures up to 5550°C. The intense heat at
arc area instantly melts
base metal and begins to burn
covering off
electrode and melt
core.
The melted core becomes filler metal for
weld and
decomposition of
flux forms a protective gaseous atmosphere around
arc area. The gas forms a shield against contamination from oxygen and nitrogen in
surrounding air. Additional shielding is provided by
electrode flux, which forms a deposit called slag.
The shielding gas is ionized, and conducts electricity and maintains
stability of
arc.
Welding Voltage and Current
Either direct current (DC) or alternating current (AC) is used. The arc voltage or working voltage is
voltage present in
welding circuit while an arc is struck and welding is being done. The arc voltage ranges from 15V to 40V depending on
arc length.
The open circuit voltage is
voltage generated by
welding machine when no welding is being done. Open-circuit voltages are normally set between 50V and 100V, but drops to
arc voltage level when an arc is struck and welding begin.
Arc Length
In any electrical circuit, there is a correlation between
voltage, current and
resistance. The best results are normally obtained with an arc length about
diameter of
electrode.
When
arc length is increased, less current flow occurs because of
increased resistance. The result is a cooler arc and a greater tendency to spatter. There will be less penetration of
weld, increased exposure to oxidation and contamination, and an erratic, unstable arc.
When
arc length is reduced, less resistance more current flows with less voltage and
arc becomes hotter. With thin material,
heat can melt a hole in
welding, porosity, and undercutting of
adjacent base metal.
Polarity
For DC machines, this is important. When
electrode is negative and
work piece is positive, this is called Straight Polarity. The opposite of this is Reverse Polarity.
DCSP or direct current straight polarity is characterized by faster melting of
electrode,
weld puddle being broad and penetration into
base metal is relatively shallow. This is used when fast welding speeds and high deposition rates are required.
DCRP or direct current reversed polarity results in a hotter arc, making deeper, narrower weld puddle. This is used for structural welding, multi pass welds, and applications requiring deep penetrations.
Most electrodes are designed to be used with only one polarity.
Power Sources
Most AC power sources contain a transformer that steps down line voltage to
level required for welding (normally less than 100V)